
Partial Solution Set, Leon Section 5.1

5.1.1c Find the angle between v = (4, 1)T and w = (3, 2)T .

Solution: We have vTw = 14, ||v|| =
√

17, and ||w|| =
√

13, so the angle between v

and w is θ = arccos
14√
221

≈ 0.343 radians.

5.1.2c Using the same vectors as in the preceding problem, the vector projection of v onto w

is
14

13
w = (42/13, 28/13)T . The vector projection of w onto v is

14

17
v = (56/17, 14/17)T .

5.1.3 For each pair of vectors x and y, compute the vector projection p of x onto y, and
verify that p is orthogonal to x− p.

(b) x = (3, 5)T , y = (1, 1)T

(d) x = (2,−5, 4)T , y = (1, 2,−1)T .

Solution:

(b) The vector projection is p =
xTy

yTy
y = 4y = (4, 4)T . Clearly p is orthogonal to

x− p = (−1, 1)T .

(d) The vector projection is p =
xTy

yTy
y = −2y = (−2,−4, 2)T . As in (b), the verifica-

tion of orthogonality is trivial.

5.1.5 Find the point on the line y = 2x that is closest to the point (5, 2).

Solution: We want to find the vector projection of v = (5, 2)T onto some vector w that
is colinear with the given line. Any choice will do, say w = (1, 2)T . The projection is
vTw

wTw
w =

9

5
w = (9/5, 18/5)T .

5.1.7 Find the distance from the point (1, 2) to the line 4x− 3y = 0.

Solution: Let x = (1, 2)T . We may choose any vector y that is contained in the line
4x − 3y = 0; the vector (3, 4)T will do nicely. We may proceed in two ways. Method
1: find the vector projection p of x onto y, then compute the length of x − p. Method
2: find a vector z orthogonal to y, and compute the scalar projection of x onto z. The
distance in question is the absolute value of the scalar projection. This is marginally the
easier approach. The line through the origin perpendicular to 4x − 3y = 0 is the line
3x + 4y = 0. We can choose z = (4,−3)T . It follows that the scalar projection of x onto

z is given by α =
xTz

||z||
= −2/5, and the distance is 2/5 = 0.4 units.



5.1.8 In each of the following, find the equation of the plane normal to the given vector N
and passing through the point P0.

(a) N = (2, 4, 3)T , P0 = (0, 0, 0).

Solution: We know that, for any point P = (x, y, z) in the desired plane, the vector
PP0 is orthogonal to N. It follows that the equation of the plane is

NT PP0 = 2(x− x0) + 4(y − y0) + 3(z − z0) = 2x + 4y + 3z = 0.

(c) N = (0, 0, 1)T , P0 = (3, 2, 4).

Solution: As in (a), the desired equation is

NT PP0 = 0(x− x0) + 0(y − y0) + 1(z − z0) = z − 4 = 0.

5.1.9 Find the distance from the point (1, 1, 1) to the plane 2x + 2y + z = 0.

Solution: The given plane is normal to (2, 2, 1)T and passes through the origin. Since we
want only the distance, it is the scalar projection α of x = (1, 1, 1)T onto y = (2, 2, 1)T

that we’re after. This is given by α =
xTy

‖y‖
=

5

3
.

5.1.11 If x = (x1, x2)
T , y = (y1, y2)

T , and z = (z1, z2)
T are elements of R2, prove:

(a) xTx ≥ 0.

Solution: This follows directly from the definition: xTx = x2
1+x2

2. Since the square
of a real number is nonnegative, then so must be xTx.

(b) xTy = yTx.

Solution: This, too, follows from the definition and properties of real numbers:

xTy = x1y1 + x2y2 = y1x1 + y2x2 = yTx.

5.1.12 If u and v are vectors in R2, show that ||u + v||2 ≤ (||u||+ ||v||)2 and hence that
||u + v|| ≤ (||u||+ ||v||). When does equality hold? Give a geometric interpretation of
the inequality.

Solution: The way that this problem is stated, it is tempting to take a componentwise
view of u and v. Such an approach might lead to the following solution:

Assume that u = (u1, u2)
T and v = (v1, v2)T . Then

||u + v||2 = (u1 + v1)
2 + (u2 + v2)

2 = u2
1 + v2

1 + u2
2 + v2

2 + 2u1v1 + 2u2v2,

while

(||u||+ ||v||)2 =
(
(u2

1 + u2
2)

1/2 + (v2
1 + v2

2)
1/2

)2
= u2

1+u2
2+v2

1+v2
2+2(u2

1+u2
2)

1/2(v2
1+v2

2)
1/2.

2



So it all hinges on a new inequality,

u1v1 + u2v2 ≤ (u2
1 + u2

2)
1/2(v2

1 + v2
2)

1/2.

This might seem difficult to verify unless one notices that this can be rewritten as

uTv ≤ ||u||||v||,

which is precisely the Cauchy-Schwarz inequality.

But if it all hinges on Cauchy-Schwarz, is there an easier way? Yes. We can take the
matrix point of view of our vectors u and v. Here is the result:

Proof:

||u + v||2 = (u + v)T (u + v)

= uTu + vTv + 2uTv

≤ uTu + vTv + 2||u||||v||
= ||u||2 + ||v||2 + 2||u||||v||
= (||u||+ ||v||)2 ,

where the inequality in line 3 is the Cauchy-Schwarz inequality. 2

The second method is not limited to R2, but holds wherever the Cauchy-Schwarz in-
equality holds, and is therefore the more powerful of the two.

Regardless which approach was used, it follows that ||u + v|| ≤ (||u||+ ||v||). Equality
holds when either (a) one or both of u,v is the zero vector, or (b) either is a scalar
multiple of the other. Geometrically, this is the triangle inequality in R2.
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